
Cactus Comments
A Decentralized Solution for Web Comments Using the Matrix

Protocol

Asbjørn Kjær Olling - S163615

1

Cactus Comments

Abstract
The current state of web comment systems is characterized by centralized
solutions hosted by third party service providers. The centralized and closed
nature of these solutions causes a number of unnecessary problems, which impact
both website owners and end-users. Six such problems are identified: identity
fragmentation, inconvenient follow-ups, fragility, data disappearance, forced
censorship, and limited interaction options. The claim is made that a web
comments system could be designed in a decentralized manner, in order to
resolve these six problems. Cactus Comments is introduced: a web comments
system that leverages the Matrix network to provide web comment services
using a federated architecture for decentralization. The system is implemented,
documented and tested. Seven formal experiments were designed to verify the
distributed properties of the system. Cactus Comments is then evaluated against
the six stated problems, and it is concluded that the system solves or lessens the
severity of all six problems.

2

CONTENTS Cactus Comments

Contents
Abstract 2

Introduction 6

Background 7
Matrix . 7
Matrix APIs . 7
Homeserver . 7
Directed Acyclic Graph (DAG) . 8
Brewer’s Theorem (CAP Theorem) . 8
Federated Model of Decentralization 8
Federation in Matrix . 9
Room . 11
Events . 11

Message Events . 11
State Events . 11
Power Levels . 12

Identifiers . 12
Client . 12
Application Service (Appservice) . 12

Problem Analysis 14
Disqus . 14
Facebook Comments . 15
Commento . 16
Summary and Comparison . 17

Design 18
The Federated Solution . 18
Designing for the Web Platform . 18
Designing for the Matrix Network . 19
System Overview . 21
Web Client . 22

Determining Alias of Comment Room 22
Authenticating as a Guest . 22
Authenticating as a User . 23
Accessing the Comments Room 23

Application Service . 24
Managing State . 24
Moderation Rooms . 25
Comment Section Rooms . 25

Implementation 26
Technology Choices . 26
Choosing Elm . 26

3

CONTENTS Cactus Comments

Interaction Model . 27
Room State Manipulations . 27
Comment Composition . 28
Authentication . 29

Error Handling . 30
Automatic Testing . 30
Styling . 31
Distribution . 32
User Guide . 33

Usage Example . 33
Handling Formatted Messages . 33

Security . 34
Implementation of the HTML Sanitizer 34
Fuzz Testing . 35
Performance Optimizations . 36
Limiting the Problem . 37
Selecting an Implementation . 37
Accessibility . 38

Experiments 39
Setup . 39
Experiment 1: Authenticate Using an Existing Matrix Account 40

Purpose . 40
Hypothesis . 40
Method . 40
Result . 40

Experiment 2: Convenient Cross-platform Follow-ups 41
Purpose . 41
Hypothesis . 41
Method . 41
Result . 41

Experiment 3: Continued Conversation while the Default Homeserver
is Offline . 42
Purpose . 42
Hypothesis . 42
Method . 42
Result . 42

Experiment 4: First-time Access by Invite while the Default Homeserver
is Unavailable . 43
Purpose . 43
Hypothesis . 43
Method . 43
Results . 43

Experiment 5: First-time Access via Alternate Alias while the Default
Homeserver is Unavailable . 44
Purpose . 44

4

CONTENTS Cactus Comments

Hypothesis . 44
Method . 44
Results . 44

Experiment 6: Resilience to Application Service Disruption 45
Purpose . 45
Hypothesis . 45
Method . 45
Result . 45

Experiment 7: Application Service Moderation State Persistence . . . 46
Purpose . 46
Hypothesis . 46
Method . 46
Results . 46

Discussion 47
Disruption Scenarios . 47

Unavailable Application Service 47
Unavailable Default Homeserver 48
Unavailable Website . 48
Federating Comments Through Malicious Homeservers 49

Tackling the Identified Problems . 49
Identity Fragmentation . 49
Inconvenient Follow-ups . 49
Fragility . 50
Data Disappearance . 50
Censorship . 50
Limited Interaction Options . 51
Comparison to Existing Solutions 51

Conclusion 52

Future work 52
Other Applications of Matrix for Web-Embedded Communications . . 52
Message-level Cryptographic Secrecy and Integrity 52
MSC1772: Matrix Spaces . 53
MSC2753: Peeking Via Sync . 53

References 54

Appendix A: Application Service Implementation 59
Responsibility and purpose . 59
Application service registration . 60
User experience: initial setup . 60

Technology Choice . 61
State . 61

5

Cactus Comments

Introduction
Most people read comments attached to online content: web sites, personal blogs,
news sites and on proprietary networks such as Facebook or YouTube. A few
people engage by posting comments themselves, for others to view.

Most independent websites with comment sections will not implement this
functionality themselves. This is especially true for fully static websites, which
do not have an existing back-end component. For these reasons, there is a sizeable
market for third-party comment system providers. A number of providers exist,
with different approaches to the problem.

However, most existing solutions have avoidable problems that unnecessarily
harm website owners and end-users. This report identifies a number of problems
with existing comment systems, and demonstrates that the root causes of these
problems are centralization and closed ecosystems.

We introduce Cactus Comments, a comment system that will resolve these
issues. Cactus Comments is built on top of Matrix - an open specification for
federated communication. With Cactus Comments, comment sections do not
rely on any specific host to operate. Because Cactus Comments is built on an
open specification, it can be extended, has increased compatibility with existing
systems and allows users to adapt the comment system to many circumstances.

First, we will investigate major existing comment section providers, to analyse
how existing problems are dealt with. In the background section we briefly
explain relevant theory and parts of the Matrix standard. Then, we will describe
our overall system architecture as well as the design of our client and backend
system. Next, we look at their implementations and how the various components
in the Matrix ecosystem fit together. In the chapter on experiments, we will
demonstrate the capabilities of Cactus Comments. Then in the discussion
chapter, we will evaluate the degree to which the finished system meets the
stated goals and its’ shortcomings. Finally, we conclude our work and describe
potential future work in this space.

This project was designed and implemented partly in collaboration with Carl
Bordum Hansen. The system design for Cactus Comments was arrived at in
collaboration. The web client was implemented entirely by Asbjørn Olling, and
the application service was implemented by Carl Bordum Hansen. Experiments
were conducted in collaboration, while the analysis and discussion is by Asbjørn
Olling.

6

Cactus Comments

Background
This chapter gives a brief introduction to concepts relevant to Cactus Comments.
It covers some concepts from distributed systems theory, as well as a number of
Matrix-specific concepts.

Matrix
Matrix is an open standard which specifies an protocol for secure real-time
communications over a federation (defined below) of servers[1].

Most applications built on Matrix focus on group instant messaging, but it is
intended for all sorts of real-time communication applications.

Matrix APIs
The Matrix specification defines five APIs. All interaction between components
in the Matrix ecosystem is done through these APIs. Each API consists of
requests and responses sent and received using JSON over HTTP.

• Client-Server API: Interaction between clients and servers.
• Server-Server API: Federation between servers.
• Application Service API: Privileged server add-ons.
• Identity Service API: Associating Matrix accounts with third party identi-

ties.
• Push Gateway API: Integrating push notifications for different platforms.

The Client-Server API is also used by bots and application services for operations
that are normally initiated by users.

Cactus Comments uses only three of them: the Client-Server, Server-Server, and
Application Service APIs.[1]

Homeserver
A Matrix homeserver is a server program. Users register accounts on specific
homeservers. For instance, the Matrix homeserver running at a.com might have
a user with the user id @alice:a.com. This is analogous to how email works.
In this example, a.com is the server name of the homeserver.

Homeservers have a number of responsibilities, such as storing message events,
managing user accounts, federating messages to other homeservers, resolving
state conflicts between servers, and serving and encoding media. Homeservers
implement all five of the Matrix APIs, and are the most central components in
the Matrix network.[1]

7

Directed Acyclic Graph (DAG) Cactus Comments

Directed Acyclic Graph (DAG)
A directed acyclic graph is a graph data structure, in which all edges are
directed, and there can not be any cyclic routes between the nodes of the graph.
Synchronizing DAGs in a distributed system allows us to always maintain a
partial ordering of events, even when merging two inconsistent states of the same
DAG.

A well-known example of using DAGs to maintain partial ordering in a distributed
system is the Git version control system.[32] Some distributed ledger systems
also opt to use DAGs for the same synchronization properties.[33] In Matrix,
rooms are a DAG of events. Each new event is added to the DAG with an edge
that goes to the preceding event.[1]

Brewer’s Theorem (CAP Theorem)
The CAP Theorem is describes necessary compromises for distributed data stores.
It states that any distributed data store can fulfill only two of the following three
properties:

• Consistency: nodes in the system will always agree on the state.
• Availability: nodes in the system will always respond to requests without

error.
• Partition tolerance: the system continues to operate normally, regardless

of connection interruptions between nodes.

This theorem applies to Matrix, and by extension to Cactus Comments.

Federated Model of Decentralization
Decentralization broadly describes a system architecture in which nodes don’t
depend on a single central node for any task. Decentralized architectures include
full-mesh peer-to-peer systems, partial-mesh peer-to-peer systems, and federated
systems, among others.

A federated architecture is a decentralized architecture in which clients and users’
identities are associated with one specific server, and the servers are responsible
for exchanging events in a decentralized manner. From the perspective a client
in a federated system, the server is not very different from a centralized server.

This brings a number of advantages like simplifying client implementations, and
allowing clients to be run in networks that only allow outgoing connections,
so only the servers need to be open to incoming connections. It also has the
potential to move the data persistence and maintenance responsibilities from
the end user to a trusted server administrator.[39]

8

Federation in Matrix Cactus Comments

Federation in Matrix
Homeservers can be run by anyone, and will by default1 be able to communicate
with any other homeserver. This means that a Matrix user on a given homeserver
may communicate with Matrix users on any other homeserver.

Federation is the mechanism by which homeservers share chat history. Chat
histories (or more broadly: rooms, defined below) are replicated in their entirety
across all homeservers with participating users. Rooms are synchronized using
the Server-Server API[8].

Since message histories are replicated in their entirety across all homeservers
which have participating users, there is no single point of failure as long as
at least two homeservers replicate the room. As long as at least one available
homeserver replicates the room, the conversation in that room can continue
without interruptions.

This process of synchronization is only eventually consistent. Partitioned home-
servers may disagree on which events are present in a room. Thus, the Matrix
federation procedure sacrifices the Consistency property in favor of the Avail-
ability and Partition tolerance properties of CAP theorem [1].

Homeservers synchronize room histories by sending two types of data units over
the Server-Server API. Persistent Data Units (PDUs) contains things such as
room events, which are merged into the room state and stored in the homeserver’s
persistence layer. Ephemeral Data Units (EDUs) represent events that are not
persisted, or merged into the room history. Read receipts and typing notifications
are examples of EDUs.

PDUs are distributed by the originating homeserver to other homeservers which
federate a given room. PDUs are relayed to other homeservers until an receipt
acknowledgement is received by the originating homeserver. EDUs are not
acknowledged, so they may not be received by all participating homeservers.

Matrix supports relaying PDUs through other homeservers. This means that
a homeserver can receive PDUs from a server different from the originating
server. This enables new homeservers to join a room, despite the room having
participating homeservers which are unavailable.

When relaying PDUs, a question of integrity arises. How can a receiving home-
server guarantee that a given PDU was not altered by the relaying homeserver?
Matrix solves this by the originating homeserver cryptographically signing all out-
going PDUs with its’ private key. Receiving homeservers can verify the integrity
of the event by comparing the signature to the public key of the originating
homeserver.

This assumes that the receiving homeserver knows the public key of the orig-
inating homeserver. Although homeservers can query each other directly for

1Most homeservers support disabling or restricting federation, but the typical configuration
enables global federation.

9

Federation in Matrix Cactus Comments

Figure 1: Illustration of Matrix federation. 4 users federated across 3 servers
can all communicate.

10

Room Cactus Comments

a list of their public keys via the Server-Server API, it is still possible for a
homeserver to receive a PDU from a homeserver it has never communicated with,
and is inaccessible at the moment. In this case, the receiving homeserver will
query multiple other participating homeservers for the public keys of the PDU-
originating homeserver. This approach lets the individual homeserver decide
on which homeservers to trust to share the correct keys for a third homeserver.
Additionally, this makes it harder for malicious homeservers to provide false keys
for a PDU-originating homeserver, since it only requires one faithful homeserver
to reveal that malicious activity is happening. This technique of using notary
servers to verify public keys is adapted from the Perspectives project[29].

Room
A Matrix room can be thought of as a regular chat-room.

Rooms can be configured in many ways. For instance, they may be open-to-all,
invite-only or disallow anonymous access. Rooms do not exist on one homeserver,
but are federated between all homeservers, which have users that participate in
the room.[8] All messages and room state are represented with events, meaning
a room is a directed acyclic graph (DAG) of events. Once a user has joined a
room, they can send events in the room. All participating users will receive all
events sent in the room.

Events
Under the hood, a room is a DAG of events. Events are described in the Matrix
Client-Server API specification[2].

Every event has an event type. This is a string that indicates the kind of data
in the event. There are official event types described by the specification, but
application developers are free to implement custom types.

There are two categories of room events: message events and state events.

Message Events

Message events are events that generally represent communication activity. These
can be many things like VOIP call setups, file transfers or simply text messages.
In Cactus Comments, all comments are m.room.message-type message events.
These can contain either text or multimedia content.

State Events

State events represent state that is persistent over time. State events are
modelled as a lookup table. For instance, a client might look up the state key
@alice:example.com to find Alices display name or avatar image URL. When
a new state event is submitted, it replaces the previous value at the same key.

11

Identifiers Cactus Comments

Power Levels

It is not always desirable that everyone in a room have the same permissions.
For instance, you may only want designated moderators to be able to ban users.

Power levels are numbers between −253 +1 and 253 −1. They define the minimum
power level required for certain actions as well as the power level of each user in
the room. The power level configuration for a room is defined by the latest state
event in the room DAG with the type m.room.power_levels.

Identifiers
Matrix uses identifier strings to represent resources like rooms, users, events, et
cetera.

All Matrix identifiers begin with a symbol indicating the kind, followed by a
local name for the resource and the server name of the homeserver that allocated
the identifier, separated by a colon.

Here are examples of some common identifiers:

• User ID: @alice:example.com
• Room Alias: #myroom:example.com
• Room ID: !YeaXUCNFAusqeLQrjB:example.com

Room IDs uniquely identify a Matrix room. The server part of the room ID is
the server which originally created the room. A Room IDs is the primary way of
specifying a room used in client-server interactions.

Room Aliases are human-readable names that map to a some Room ID. The
server part of the room alias is the server which allocated this name. There may
be multiple aliases for a given room, allocated by different servers. Homeservers
can resolve room aliases to room IDs.[4][2]

Client
A Matrix client is a program used by end users to interact with the Matrix
network. Clients often resemble instant messaging applications, although their
features and use cases vary. In the email analogy, Matrix clients are analogous
to email clients.[2]

Application Service (Appservice)
An application service is a program that extends the functionality of a homeserver
using the Application Service API (defined below)[3].

An application service has higher privileges than a typical client (enforced by
a shared secret with the homeserver), which lets it subscribe to certain events.
Furthermore, an application service may register namespaces for users and rooms,
which it will have exclusive and complete control over. [3]

12

Application Service (Appservice) Cactus Comments

Cactus Comments uses an application service to manage moderators in the
comment room and to create new comment section rooms on-demand.

13

Cactus Comments

Problem Analysis
We have identified the following six problems:

• Identity fragmentation: To participate in a discussion on a typical
article on the web, one often has to create a new identity for a unique
comment system.

• Inconvenient follow-ups: After commenting, one has to decisively return
to the same web page, to follow the conversation.

• Fragility: Many of the existing solutions are tightly bound to a central
server. It becomes a single point of failure for the whole system.

• Data will disappear: The comment section exists only as long as the
third party provider. Companies bankrupt, projects get abandoned.

• Censorship: A third party service provider often has the power to censor
comments. The website’s owners and users are not necessarily in agreement
with the moderation principles of the third party. This is especially
problematic for oppressed minority groups.

• Limited interaction options: One is forced to interact with comments
through a single client, which can give problems for people with disabilities
or unsupported devices.

In this section we will compare three major comments systems, with respect to
each of the six identified problems. The aim is to establish that these problems
are prevalent, and provide a basis to compare Cactus Comments with.

These comment systems were selected to demonstrate three different common
approaches to web comments. The three comments systems we will compare are:

• Disqus[23] (commercial web comments service provider)
• Facebook Comments[22] (embeddable comments plug-in by a social net-

work)
• Commento[24] (open-source web comments)

Disqus
Disqus represents the proprietary third-party service provider. A website owner
may use the system by registering an account on Disqus’ servers, and then
including code for web component in their website along with an API key, which
will receive and send comments using Disqus’ proprietary API, on their servers
only.

Following up on a conversation requires navigating to the site with a Disqus
comments section to manually check for replies. This is inconvenient for the
user, and can easily leave unfinished conversations.

Disqus is entirely dependant on Disqus’ server infrastructure. If Disqus has a
site-wide critical outage, the comments will be unavailable to all users.2

2Disqus have had six outages of varying severity in 2020.[25]

14

Facebook Comments Cactus Comments

If Disqus were to bankrupt or otherwise discontinue the Disqus comments product,
the service and data managed by it would become permanently unavailable.
Disqus state that: “without prior notice to you, [. . .] we may suspend or stop
the Service altogether”.[26]

The Disqus Terms of Service explicitly restrict the freedom of speech of its
users. Disqus reserves the right to remove content and revoke user access of the
infringers, based on these restrictions. When using Disqus, the website owner is
restricted from a number of conversation topics.[26]

As of December 2020, Disqus only supports interacting via the web component.
Although there was at one point an iOS app, this has since been discontinued,
and no Android app was ever made. Users have no choice over how to interact
with Disqus, which can be a problem on specific hardware, or for disabled
persons.[23]

Comment systems with similar properties to Disqus include IntenseDebate,
GraphComment, Muut, CommentBox, and others.

Facebook Comments
Facebook Comments is a comment system that integrates with the Facebook
social media platform. A website owner can set up Facebook Comments by
authenticating as a Facebook user, then providing the Facebook servers with a
content identifier of a Facebook post to replicate the comments to. Facebook
then generates code for a web component, that the website owner can put in
their website.

Facebook Comments have convenient follow-ups for users who already have
Facebook accounts. When a comment is replied to, the user receives a notification
in the Facebook interface. This means that the user is notified about a continuing
conversation, without having to actively navigate to the comment section.

Similarly to Disqus, Facebook can at any time choose to discontinue the product,
without any obligations to the user. This makes the website dependant on Face-
book’s continued interest in maintaining the Facebook Comments infrastructure.
If Facebook discontinues the product, the website owner has no recourse.

Facebook also maintains guidelines for limiting free speech, and reserves rights
to remove content or revoke the access of users that don’t comply. This means
that websites using Facebook Comments will be subject to the same restrictions.
This can be problematic to oppressed or otherwise persecuted communities.3

Facebook does have a number of clients for different devices, many of which are
capable of commenting and receiving notifications regarding comments. However,
the APIs are not public, and Facebook does not allow third parties to create
additional clients. Because of this, there is a hard limit to how many clients that

3Recent years have seen politically controversial groups migrating to federated social media
due to problematic censorship terms.[27][28]

15

Commento Cactus Comments

can exist (decided by Facebook). Users with unsupported devices or acessibility
needs are left without recourse.[22]

There are other comment systems with similar properties to Facebook, which
come with similar problems. These include YouTube, Reddit, Instagram and
Twitter.

Commento
Commento is an open source comment system which anyone may use and/or
modify to better suit their needs. It consists of a backend service to manage
users and store comments, and a frontend web-component to interact with the
comment section. Website owners can either pay for access to Commento’s
backend services, or download the backend software and host it themselves. In
either case, the website owner embeds the Javascript code for the front-end
element in their website.

Commento manages identities in the backend. Identities can not be shared
between Commento instances, so a user has to create a new identity for each
instance of the server-side Commento service.

When someone directly replies to a given comment, that user can be notified
over email of the new comment. The email will contain a link to the relevant
comment section. The user will have to use an email client to receive the
notification, and from the email client switch to using a web-browser to follow
up on the conversation. The user has to use two different programs to complete
the interaction. 4

Commento depends on a specific instance of the backend service to be running,
for the comment sections to be available. If the backend service fails, or if the
service if offline for any reason, the comment section becomes unavailable.

The comments are stored in a PostgreSQL database managed by the backend
service. In a self-hosted Commento installation, the website owner has full
ownership and control over the comment and user data. The system does
not depend on third party services for the continued existence of the data.
Additionally, the code itself is released under the MIT license, which grants users
the rights to use, modify and distribute the software. This means that an entire
Commento system can run without dependence on entities outside the control
of the website owner.

This independence from external services also implicates independence from
external control. When self-hosting Commento, the website owner defines the
terms of usage, without any third-party influence.

4Interestingly, the Commento web client and a typical email client are both programs
designed for facilitating natural-language conversations between humans. However, email
canont be used to send messages in the Commento conversation, and is only used as a
notifications service.

16

Summary and Comparison Cactus Comments

Since users are granted the rights to modify and extend the Commento system,
there is not an enforced limit to the number of clients that can exist. However,
as of December 2020, there is only the one web client. This is very different
from the Facebook solution: where Facebook has several clients and forbids the
creation of new clients, Commento has only one client and welcomes the creation
of new clients.

Comment systems with similar properties to Commento include: StaticMan,
Talkyard, Isso, Remark, and Hyvor Talk.

Summary and Comparison
The following table shows an overview of the issues that afflict each of the three
solutions. An X indicates that the problem burdens the comment system.

. Disqus Facebook Commento
Identity Fragmentation X X X
Inconvenient Follow-ups X Email-based
Fragility X X X
Data will disappear X X
3rd party censorship X X
Limited interaction options X X X

17

Cactus Comments

Design
This section describes the design of Cactus Comments. It covers the consid-
erations made, and the resulting design. The final design is the product of a
tight feedback loop between the implementation process and executing design
revisions. However, the vast majority of the design work was done before any
code was written.

First, we discuss how the federated model of decentralization can be used to
tackle the problems identified in the previous section.

We move on to investigate the possibilities afforded to us by the web platform
and the Matrix ecosystem. These are evaluated specifically with regards to the
web comments use case. A number of design goals are set for how the eventual
implementation should interact with these.

Finally, we detail the components of the Cactus Comments system. Attention
is given to the responsibilities of each component, how they interact with each
other, and how they interact with the Matrix system at large.

The Federated Solution
We suggest that the Matrix protocol for web comments can tackle the six
identified problems. The federated model of decentralization can give the
comment data a resiliency and longevity that exceeds centralized solutions.

Fragility, data disappearance, and identity fragmentation can be solved letting
users participate through the Matrix server of their choice. Fragility and data
disappearance are solved by servers in the federation replicating all of the
comment data, making each node independent of all other nodes for the continued
existence of the comments. Identity fragmentation is solved by letting users
choose which homeserver to trust with their identity.

Matrix being an open standard tackles the problems of censorship, limited
interaction options, and inconvenient follow-ups. Since Matrix is open and not
controlled by a single entity, a site owner does not have to depend on an external
service provider to set the terms of usage for the system. Anyone can run a
Matrix server, and choose to run Cactus Comments alongside it, setting the
terms themselves. Matrix has a large number of tools for moderation, chat, or
general purpose clients, giving users freedom in selecting how to interact with
the system. Since the primary use case for Matrix today is instant messaging,
being notified and following up on conversations is a built-in capability in most
Matrix applications.

Designing for the Web Platform
Since the stated use-case is specifically to provide embeddable comment sections
for web comments, Cactus Comments is fundamentally tied to the web platform,
the web browser.

18

Designing for the Matrix Network Cactus Comments

Web browsers are restricted to a select number of protocols for building networked
applications. The most prominent among these being HTTPS. All five of the
Matrix APIs are intended for use with HTTPS, which makes Matrix a remarkably
good fit for building applications for the web platform. The embeddable web
client should be able to communicate directly with any Matrix homeserver,
without depending on any intermediary services.

The embeddable aspect means that Cactus Comments should be able to integrate
well with existing web applications. There are two aspects to this:

The first is limiting the logical interface of the comment system, so as to
minimize its effects on the application in which it is embedded. Having fewer
interactions with the surrounding website we means having fewer requirements
for the behavior of the website.

The second aspect is about allowing the embeddable web client to integrate
visually with the aesthetic of the embed environment. The style of the client
should be highly portable, so it can be embedded in a range of environments
without damaging the visual design intents of the implementor. This should
be achieved by making as few visual choices on behalf of the implementor as
possible, while maintaining a layout which will not be adversely affected by
choices made by the implementor.

Designing for the Matrix Network
As was covered in the background chapter, a Matrix room is a graph of events
exchanged by any number of Matrix users. This is fit to model a to a web com-
ments section.5 For instant messaging applications, which is the most common
application of Matrix, clients use rooms to represent group conversations.[12][13]
Cactus Comments will represent comment sections using rooms.

Although custom event types are supported, the Matrix specification provides a
number of standard event types with defined behavior. Specification-compliant
clients and homeservers will react to these events in well-defined ways. Using
standard event types will allow the comment system to take advantage of existing
software built for the Matrix network. It is a design goal for Cactus Comments
to exclusively rely on standard event types present in the r0.6.1 Client-Server
API specification.

A notable standard event type is m.room.message, which is used to represent
human-readable chat messages. This event type has eight variants, representing
eight different media types. These include m.text for text messages, m.image
for pictures, and m.audio for sound, among others. Cactus Comments should
leverage these standard types to enable multimedia communications with a
number of existing clients.[2]

5Existing comment sections often resemble a tree-structure, sometimes a flat sequence.
[22][24][23]

19

Designing for the Matrix Network Cactus Comments

Moderation capabilities are a highlighted feature of existing comment systems.
[22][24][23] In order to be considered a viable alternative, Cactus Comment
should have moderation capabilities comparable to existing solutions. Matrix
provides the standard m.room.power_levels state event type, which can be
used to granularly manage moderation roles of individual users, as well as the
permissions afforded to individual roles. Using this power levels mechanism will
allow Cactus Comments to make use of the existing tools for moderation in the
Matrix network.

Following the observation that power levels are set on a per-room basis, a
problem appears: if the comment system administrator would like to add a new
moderator or ban a user across all comment sections on a website, they would
need to do this for each comment section room individually. Since a website
might realistically have hundreds or thousands of comment sections, this is not
practical.

The same impracticality appears, when we look at room creation. Matrix rooms
need to be explicitly created, in order for users to be able to interact with them.
It was considered to simply let the first interacting user create a given room, if
it does not yet exist. However, this is not a viable option, since the creator of a
room is assigned a high power level. One of the stated goals of the comment
system, is to let the website owner have full moderation power over the comment
sections on their website, and letting the first user be a moderator is in direct
conflict with that goal.

The Application Service API is a can be used to solve this problem. The
application service is a networked program which is registered with a specific
homeserver. An appservice will be notified of any transactions that involve
a room with a room alias that fits a provided regular expression. The server
waits for a response from the appservice, before responding to the user-provided
request. The appservice has full control over all rooms in its namespace.

If the web client only ever tries to join room aliases that match the regular
expression registered to an appservice, that appservice could initialize any not-
yet-created rooms automatically, and set the correct moderation settings for it.
Similarly, whenever changes are made to an existing room (such as banning a
user), the appservice will be notified, and it could replicate the events across all
of the other comment section rooms of a website.

Cactus Comments should demand as little as possible of the website
owner/administrator to function. If we do not want to require every website
owners to host their own instance of such an appservice, the appservice should
be able to maintain separate moderator lists and ban lists, for separate websites,
and be able to identify which moderation policies to initialize rooms with.

20

System Overview Cactus Comments

System Overview
The final design of the Cactus Comment involves two components, which should
be used in combination with a web server and a Matrix homeserver.

One component is an embeddable web client, which can be used by website
developers. The web client is a minimal Matrix client, designed to be embedded
in a webpage, to add comment section functionality. It uses the Matrix Client-
Server API[2] to read and send comments. The web client does not require
users to authenticate using existing Matrix accounts, and accesses the comments
using a guest account by default. However, the web client does allow users to
authenticate using existing Matrix accounts, at which point the web client will
only communicate with the homeserver on which the account is hosted. This
gives the web client independence from any specific homeserver.

The other component is an application service. This appservice manages moder-
ation roles and ban lists across all rooms contained in a namespace. Website
owners can register such a namespace with the application service by interact-
ing with a setup bot using a Matrix messaging client. The appservice’s only
persistence layer is Matrix, and it only ever uses standard Matrix events.

Figure 2: Components of the Cactus Comments system architecture

21

Web Client Cactus Comments

Web Client
The web client is a minimal, single-room Matrix client. An instance of the web
client will only connect to one room, as a single instance of the web client only
displays one comment section.

Determining Alias of Comment Room

In order to connect to a specific room, the client needs to know a room alias6

which resolves to that room. It does so by generating the room alias from three
fields provided by the site owner. These must provided when initializing the web
client.

• siteName: Name identifying the site namespace, registered with the appli-
cation service.

• commentSectionId: A unique identifier for this comment room.
• serverName: Name identifying the Matrix server.

The siteName and serverName fields may be set statically on a website-wide
basis, but the commentSectionId field must be unique for each comment section.

The web client will generate a room alias following this scheme (text enclosed in
angle brackets to be replaced with configuration variables):

#comments_<siteName>_<commentSectionId>:<serverName>

There are several reasons for choosing this format:

• The alias has a constant prefix, simplifying the namespace registration for
the appservice.

• The siteName can be used by the appservice to infer which moderation
settings should apply to the room.

• There is a clear distinction between which values should remain static
between comment sections, and the parameter which should change on
each comment section.

The client could allow the website owner to construct the room alias string
manually. This would allow for attaching the web client to arbitrary rooms, and
not necessarily those with a specific naming scheme. However, the decision was
made to focus on clarity and ease-of-use for the stated use-case.

Authenticating as a Guest

While initializing, the web client will register a temporary guest user with the
default homeserver. The guest account allows the web client to display comments,
while the user is not logged in.7

6The room alias is a name by which a Matrix client can look up a specific room id.
7The guest account is registered using a single HTTP POST request to the Client-Server

API /register endpoint, with parameter ?kind=guest. The JSON response contains an access
token which can be used for the following requests.[2]

22

Web Client Cactus Comments

The default homeserver URL is provided by the website owner when initializing
the client. This URL must point towards a homeserver with guest registration
enabled. The default homeserver is only used for guest access; Once a user logs
in to their Matrix account, the default homeserver is no longer needed.

The guest access token can be used for both sending and receiving comments,
provided that the room is public, and guest posting is permitted8 [2]

Authenticating as a User

If the user wishes to submit comments using an existing Matrix account, they
may authenticate with whichever homeserver they choose. As is typical for
Matrix clients, this can be done through the web client UI.

The user interactively provides a username, password, and homeserver URL.
The client uses this information to craft a login request for the provided URL. 9

Once the commenting user has authenticated with some homeserver, all further
Matrix communications from the web client will happen with chosen homeserver.

If the user logs out (or if an authentication error is returned to any request),
the client will fall back to the default homeserver, and issue a guest registration
task.

Accessing the Comments Room

First access (once authenticated as a guest or a user) to the comments room is
done using a chain of three requests to the Client-Server API.

1. Look up room ID of generated room alias.
2. Get sync tokens and messages using the room ID.
3. Get member users of room, using the room ID.

The information collected can be used to initialize the web client’s internal state
for modelling the Matrix room.

This room-initialization flow was originally a chain of five requests, but has
been optimized through several iterations to reduce the bandwidth and time to
complete.

See Figure 3 for an overview of this interaction. 10

8The application service will configure these properties.
9This is done by issuing a HTTP POST request to the Client-Server API’s /login endpoint,

with a JSON body consisting of the username and password. The response contains an access
token for this user.[2]

10Although the sequence diagram seems to indicate no message latency, the latency of
requests vary in practice.

23

Application Service Cactus Comments

This chain of three requests is carried out when the client is in an authenticated
state, but does not yet have the room state.

Application Service
The application service (appservice) is a server-side program that interacts with
any specification-compliant Matrix homeserver. The appservice is responsible for
managing moderation policies across a range of comment sections, and initializing
new Matrix rooms for new comment sections. It does this by carefully replicating
events between Matrix rooms.

Managing State

Being able to persistent moderation policies for the comment sections of a
website, the appservice needs to maintain some state. The original designs for
the appservice included mainting lists of sitenames, owners and policies in a
traditional relational database. This idea was abandoned in favor of using Matrix
events for all persistent state. This gives our moderation metadata all of the
resilience properties that Matrix provides, just like the raw comment data.

The appservice will register the prefix #comments_ with the associated home-
server. This lets the homeserver know, that it should notify the appservice of
new events in any room with a room alias that starts with #comments_.

24

Application Service Cactus Comments

Moderation Rooms

In order to register a new website to manage moderation policies for, the website
owner should use a Matrix client to send a message to a specific user id, registered
by the appservice. Through a chat interface, the user can register a new website
namespace, or siteName.

This creates a moderation room with the room alias #comments_<siteName>,
in which the website owner has a high power level. Select events in this room
(power level changes, user bans, unbans) will be replicated from this room into all
comment section rooms in that siteName’s namespace.\footnote{ The appservice
finds all the rooms that are match #comments_<siteName>_.*:<serverName>.
}

Comment Section Rooms

As covered in the web client design section, comment section rooms will have a
room alias like #comments_<siteName>_<commentSectionId>:<serverName>.
Whenever the appservice is notified of an event for a room which does not yet
exist, but has a room alias that matches that grammar, it will create that room.
The appservice will look up the moderation room of that siteName, and replicate
the relevant moderation events into new the comment section room.

The comment section rooms should also replicate moderation events back to
the moderation room. If a user is banned in a comment section room, that
m.room.member event should be replicated to the moderation room, from where
it will be replicated into all comment section rooms, as per the moderation
room’s behavior.

25

Choosing Elm Cactus Comments

Implementation
This chapter will go over the implementation of the Cactus Comments web client.
The Cactus Comments web client was implemented by Asbjørn Olling. The code
is released as free software under the AGPL license.11

The Cactus Comments application service was implemented by Carl Bordum
Hansen. A description of the Cactus Comments appservice written by Hansen
can be found in Appedix A of this report.

Technology Choices
The embeddable client is implemented in Elm, CSS and JavaScript.

Elm is a programming language that compiles to JavaScript, which can be
distributed with the web page. CSS and JavaScript are used for improving
integration with the web platform.

As of Cactus Comments client v0.3.0, the linecount distribution is as follows:

Language Files Blank lines Comment lines Lines of code
Elm 9 403 181 1491
CSS 1 35 36 139
JavaScript 1 4 3 24
———– ——– ———- ———– ————–
Sum 11 442 220 1654

Choosing Elm
Elm is a purely functional programming language; it is strongly typed and only
supports immutable values. Elm claims that these robustness measures result in
“No Runtime Exceptions”[18]. While there are technically still some scenarios
that can crash an Elm program12, it is true that Elm programs are much more
explicit with regards to error handling. This results in more predictable behavior,
and a more resilient program.

Elm does not support side-effects to happen inside functions in any way. The
Elm runtime passes input events and the previous state object into a call to
our update function, which we will guarantee returns a state object, and an
optional effect. In Cactus comment, the most commonly used effect is an HTTP
request to a Matrix homeserver. Effects are expected to generate new input
events. These can contain data such as the success of the effect, and possible
resulting data.

11The web client project page and git tree is publicly accessible at https://gitlab.com/cactus-
comments/cactus-client

12For instance: exceeding the memory limits of the host system is still a fatal error.

26

https://gitlab.com/cactus-comments/cactus-client
https://gitlab.com/cactus-comments/cactus-client

Interaction Model Cactus Comments

In the web client, Msg is the input data type and Cmd Msg is the type of an
outgoing effect, which result in data of type Msg. Model is the program state
type. This means the type signature for all logic handling in our program is:

update : Msg -> Model -> (Model, Cmd Msg)

This architecture allows for precise and predictable composition of effects on the
outside world. Additionally, the statically typed nature of the language makes
the possible error cases semantically explicit, making the failure scenarios of a
program clearer and simpler to manage. These two aspects combined, forces the
web client to consist of a concise list of interactions, with well-defined possible
results.

The web client is a very effectful application. A significant portion of the program
logic is concerned with sending and receiving messages from Matrix homeservers.
Getting these interactions right is critical to the correct functioning of the
client. Using Elm as the primary language helps us model how these interactions
compose in a precise and safe manner.

Interaction Model
The web client defines 11 different possible input messages, that may manipulate
the client’s internal state. Each input message is generated as the result of an
effect on the outside world. Care was taken to reduce the possible interactions
with the outside world to the smallest possible set of messages. This subsection
will describe each message, how it affects the web client state, and which effects
it may generate.

The 11 messages are as listed:

• GotRoom
• ViewMore
• GotMessages
• EditComment
• SendComment
• SentComment
• ShowLogin
• HideLogin
• EditLogin
• Login
• LogOut

Room State Manipulations

GotRoom This input message is generated whenever the web client has connected
to a Matrix room for the first time with a given access token - or failed while
attempting that action.

The data contained in a GotRoom message has the type:

27

Interaction Model Cactus Comments

Result Session.Error (Session, Room)

This type signature indicates that the data is either a Matrix API error (see the
Error Handling section below), or a tuple consisting of a new Room object along
with the Session object which was used to create it.

The current state object’s room and session properties are replaced with the
new data. This input message always results in an effect that stores this latest
Session object in the web browser’s HTML5 localstorage persistence layer.
If the room contains fewer comments than the current pagination size, this
input message will also result in an effect that fetches more messages using the
Client-Server API’s /messages endpoint[2], which will eventually resolve to a
GotMessages input message.

GotMessages This input message indicates that an attempt to fetch more
messages has completed (regardless of success or failure). The data associated
with this input message has the type signature:

Session Room (Result Session.Error GetMessagesResponse)

The message data has a type signature including an existing Session and Room
object, in order to maintain the guarantee that a GotMessages event can only
be created when the web client is in a state where it has a valid access token
from the homeserver, and an initialized room which it can merge new messages
into. This implementation practice takes advantage of the thorough type system
of Elm, to make guarantees about the possible states of the web client. This
practice helps us avoid errors related to invalid program states.

The remaining data contained in this input message is either a Matrix API error,
or a GetMessagesResponse object, which, if successful, contains a list of Matrix
message events and pagination tokens to use for subsequent message fetches.

ViewMore This input message type indicates that the user has pressed the
“View More”-button in the user interface. This will generate an effect to fetch
more messages via the Client-Server API’s /messages endpoint, which eventually
resolves to a GotMessages input message. Similarly to the GotMessages input
message, the ViewMore input message requires a Session and Room object in
order to be constructed. This lets us leverage the Elm type system to enforce
the guarantee that a ViewMore message cannot be generated, if the client does
not have a valid room and token object.

Comment Composition

EditComment This input message indicates that the user has edited the text in
the comment editing text field. This input message contains a simple String,
with the new contents of the entire text field contents. The internal state object
is updated with the contents of the text field. No effects are generated by this
message.

28

Interaction Model Cactus Comments

SendComment This input message indicates that the user has pressed the Send
button. Similar to other input messages, this message’s constructor requires a
valid Session and Room object. This guarantees that the web client cannot issue
send effects while in an unauthenticated state.

The internal state is updated to let the comment editing text field contain
an empty string, and an effect is output to sends the current contents of the
text field as an m.room.message event with message type m.text. This effect
eventually resolves to a SentComment input message.

SentComment This input message is generated upon the completion (successful
or not) of an attempt to send a comment. The associated data has the type
signature:

Result Session.Error ()

The type signature tells us that the message will either contain a Matrix API
error, or the unit type (), which contains no data at all - indicating a success.

Authentication

ShowLogin This input message indicates that a user has pressed the “Log in”
button. This displays a login form in the browser’s Document Object Model
(DOM).

HideLogin This input message indicates that a user has pressed the “Back”
button of the login form. This removes the form from the DOM.

EditLogin This input message indicates that the user has changed the content
in one of the three text fields in the login form. The client’s internal state is
updated to reflect the new content of the form.

Login This input message indicates that the user has pressed the “Log in”-
button in the login form. The data associated with this input message is the
three strings present in the login form: a homeserver URL, a username and a
password. The client will generate an effect which first issues an authentication
request to the given homeserver URL, then carries out the initial room fetch
using the new access token, as described in the Design section (see Figure 3. for
an overview). The effect will eventually result in a GotRoom message.

LogOut This input message indicates that the user has pressed the “Log out”-
button. This initiates a guest registration request to the default homeserver,
falling back to an anonymous access of the room. The effect continues by using
the resulting access token to issue a chain of requests to initialize a Room object
with the guest access token, as displayed in Figure 3. This eventually generates
a GotRoom input message.

29

Error Handling Cactus Comments

Error Handling
Some of the effects issued by the client may fail to resolve correctly. Specifically,
every HTTP request issued has a number of failure modes, including:

• Any number of network failures
• Request timeouts
• Failure to parse the HTTP response
• Any number of Matrix-specific Error responses

In case of a network failure or a request timeout, the web client will wait a
number of seconds before re-issuing the same request. The number of seconds is
incremented by an exponentially increasing amount on each retry, as per the
exponential-back-off principle. This reduces load on both the client and the
homeserver in case of failure.

Any non-200 response13 from a Matrix homeserver will include an error field,
and an optional error description.[2] The client parses the Matrix-specific error
codes, rather than acting on HTTP status codes. Some of these error codes are
handled gracefully by the client:

M_LIMIT_EXCEEDED An M_LIMIT_EXCEEDED error indicates that a user has ex-
ceeded the rate limits enforced by this homeserver. These error responses will
have a field named retry_after_ms, indicating the time to wait before being
allowed to issue another request. The web client will parse this number and wait
the given number of milliseconds before re-issuing the same request.

M_UNKNOWN_TOKEN This indicates that the provided access token is considered
invalid. The web client will invalidate the current Session object and issue a
guest account registration to the default homeserver.

Any other error Any other error is considered an unrecoverable error, and is
displayed to the user. If an error description is present, it is displayed alongside
the error code.

Automatic Testing
Along with the implementation of the client, a suite of unit tests have been
developed, to aid with verifying the core functionality of the web client as a
closed system. Focus was deliberately given to the most critical and the most
complex parts of the system, as these are respectively the areas that are most
important to get right, and the most difficult to get right.

A total of 25 unit tests were developed. This results in a coverage spanning of
31% of all code branches, or 23% of all function declarations.

13"200 OK" is the standard HTTP status code indicating success.

30

Styling Cactus Comments

The coverage distribution over the modules of the web client are summarized
below. It is apparent that the majority of testing effort was spent on the
ApiUtils and FormattedText modules.

Module decls let decls lambdas branches
ApiUtils 10/10 (100%) 4/4 (100%) 2/2 (100%) 2/2 (100%)
Editor 0/7 (0%) 0/12 (0%) 0/3 (0%) 0/4 (0%)
FormattedText 8/11 (73%) 2/2 (100%) 7/9 (78%) 31/39 (79%)
LoginForm 0/4 (0%) 0/7 (0%) 0/3 (0%) 0/2 (0%)
Main 0/6 (0%) 0/10 (0%) 0/7 (0%) 0/28 (0%)
Member 0/4 (0%) n/a 0/5 (0%) n/a
Message 1/9 (11%) 4/11 (36%) 0/7 (0%) 3/23 (13%)
Room 0/11 (0%) 0/4 (0%) 0/7 (0%) 0/2 (0%)
Session 0/22 (0%) 0/1 (0%) 0/4 (0%) 0/16 (0%)
total 19/84 (23%) 10/51 (20%) 9/47 (19%) 36/116 (31%)

Styling
A default CSS stylesheet is provided with the Cactus Comments web client. This
stylsheet has been designed to optimize for portability across web environments
with different applied stylesheets, as well as ease of modification for website
developers.

Although Elm does provide ergonomic abstractions for web applications
stylesheets, the choice was made to implement the visual styling for the web
client using plain CSS exclusively, with no pre-processors or other abstractions.
CSS is a W3C native standard, and is supported by every web browser. It is
expected that any website implementor will have some familiarity with CSS.
Additionally, no tools (aside from a text editor) are required in order to modify
the provided stylesheet. Using plain CSS lessens the friction associated with
adapting the stylesheet for a specific visual appeal.

In order to test the portability of the web client’s default stylesheet, we embedded
the web client in three different web pages, each of which use a different stylesheet.
Specifically, we tested it in one website using Sakuro CSS[34], one website using
mkDocs’ default theme[35], and one with no stylesheet at all. This testing led to
discovering a series of incompatibilities, which have subsequently been resolved.

Below is a screenshot of the comment system in three different styling contexts:

31

Distribution Cactus Comments

Figure 3: From left to right: mkDocs’ CSS, Sakuro CSS, no CSS.

Distribution
Since the Cactus Comments web client is released under an AGPL license, the
website owner is free to make a copy of the compiled Javascript files, and include
these in their application.

However, for ease of use with minimal websites, a distribution mechanism was
chosen for Cactus Comments. This distribution should allow website implemen-
tors to link to the appropriate Javascript and CSS assets, without hosting these
themselves.

Cactus Comments’ compiled assets are distributed using IPFS. IPFS is a global
content-addressable peer-to-peer network for file sharing. We won’t go into much
depth regarding the distributed properties of IPFS, but being a distributed
system, it does share many of the Matrix’s fault tolerance properties.[36]

The IPFS support is seeing growing support in browser, with three major web
browsers already supporting IPFS natively.[?] The browsers which do support
IPFS natively may choose to fetch the asset from a number of peers on the IPFS
network. For the browser that don’t an IPFS gateway link can be provided.
IPFS gateways are services which proxy HTTP requests onto the IPFS network,
effectively acting as a cached proxy for IPFS content.[36][38] Once on the IPFS
network, users may access the file via any IPFS gatway. This lets us cache the
content on a number of Content Delivery Network (CDN) servers, by leveraging
the distributed nature of IPFS.

On every release of the Cactus Comments web client, an automatic continuous
deployment process compiles the Elm application into single minified Javascript
file, and uploads the resulting Javascript - and the default CSS stylesheet - to
pinata.cloud, which is an IPFS pinning service and IPFS gateway.[38] From
there, the files can be distributed amongst IPFS peers who use the file.

32

User Guide Cactus Comments

User Guide
This subsection describes how to embed the Cactus Client web client in any web
page. For a usage guide on how to install the appservice, refer to Appendix A.

In order for a website implementor to use the Cactus Comments web client, they
need to do the following two steps:

• Include the client’s Javascript and CSS files from the webpage, by using
the IPFS gateway link.

• Call the initComments function with a Javascript object that has the
following members:
– node: a DOM node to render the comments inside.
– defaultHomeserverUrl: the URL of a homeserver with guest regis-

tration enabled.
– serverName: the server name of the homeserver with a Cactus Com-

ments appservice registered.
– siteName: the moderation namespace registered with the Cactus

Comments appservice.
– commentSectionId: a unique identifier for the comment section to

load on this page

Usage Example

The following HTML code is an example of a minimal but completely functional
web page, which embeds the Cactus Comments web client v0.3.0, instructing it
to use the homeserver hosted at https://cactus.chat:8448:

<script type="text/javascript" src="https://gateway.pinata.cloud/ipfs/QmSJZhJ8zNBQbE2vngLPG6EAnFpiNHbNXdkmfFzeYXD1ek/v0.3.0/cactus.js"></script>
<link rel="stylesheet" href="https://gateway.pinata.cloud/ipfs/QmSJZhJ8zNBQbE2vngLPG6EAnFpiNHbNXdkmfFzeYXD1ek/v0.3.0/style.css" type="text/css">
<div id="comment-section">Loading Comments...</div>
<script>

initComments({
node: document.getElementById("comment-section"),
defaultHomeserverUrl: "https://cactus.chat:8448",
serverName: "cactus.chat",
siteName: "ExamplePage",
commentSectionId: "ExampleSection"

})
</script>

Handling Formatted Messages
Several of the instant message msgtypes14 may contain optionally formatted
text content[2]. This is how Matrix supports rich text features like bold, italics,
quotes, nested lists and code blocks.

14‘m.text‘, ‘m.emote‘ and ‘m.notice‘

33

Handling Formatted Messages Cactus Comments

The formatted text content is presented in an optional field in the message
event called formatted_body. The markup language used is indicated by the
associated format property.

Currently org.matrix.custom.html, a subset of HTML, is the only markup
syntax described by the Matrix specification15, but clients are free to implement
whichever new format they wish, or extend the existing format for client-specific
features. Notably, there is an active proposal to extend the current format syntax
to support rendering LATEX content, which is already supported by at least one
client[9].

Security

Rendering user-provided HTML in the browser is potentially a security vulnera-
bility. If not handled properly, a malicious user could inject javascript code into
a victim user’s browser, potentially exposing cookies, session tokens or other
sensitive information. Cross-Site Scripting attacks are number seven on the
OWASP Top Ten list of critical web application security risks[19]. When con-
sidering the security of the comments web client, protections against Cross-Site
Scripting attacks is a critical focus.

Our web client manages the user’s Matrix access token, which is sensitive
information. The access token could be used by an attacker to gain access to
confidential information, or to forge messages on an attacked user’s behalf. The
web client also is meant to be embedded into other webpages, in which case
the embedding website might expose any number of related security issues, or
other sensitive informations. Security is of high importance to the comments
web client.

Implementation of the HTML Sanitizer

To sanitize, the client first parses the formatted HTML string into a structured
tree, using the Elm package hecrj/html-parser[17]. This library parses strings
according to the WHATWG’s guidelines for HTML parsing[21]. When parsed,
we are left with a structured HTML tree of the following type (essentially a rose
tree data structure):

type Tag = String

type Attribute = (String, String)

type Html
= Element Tag (List Attribute) (List Html)
| Comment String
| Text String

15As of Client-Server API r0.6.1.

34

Handling Formatted Messages Cactus Comments

The sanitization algorithm traverses this tree recursively, comparing each element
tag to the set of tags allowed according to the Matrix Client-Server specification16.

If the tag is not on the whitelist in the set of allowed tags, replace the tag
with div, and remove all of its attributes. If the tag is on the whitelist, keep
the tag, and apply a transformation function to its attributes. In both cases,
the element’s children are replaced by recursive applications of the sanitization
function.

The attribute transformation function are selected based on the tag. Only font,
span, a, img, ol, and code tags permit having any attributes. Any other tag
will have its attributes replaced with the empty list. An attribute is only kept if
it is explicitly allowed according to the sanitization guidelines{matrixspec:cs},
and its value parses in the expected manner.

Some attributes have restrictions on which values are permitted. For instance,
href URLs must not be relative, and must be one of five specific schema. Color
attributes must be 6-character hexadecimal color codes.

Apart from filtering attributes, the attribute transformation functions also
transform select attributes into entirely separate attributes. Specifically, the
two color attributes are transformed into CSS style attributes, and Matrix
content URIs (MXC URIs) are replaced with the appropriate HTTPS call to
the Client-Server API. For this reason, the HTML sanitization function is not
idempotent.

During development, we discovered a CSS injection vulnerability in this last
step. It allowed any attacker with access to the Matrix room to craft a malicious
message, which injects CSS into some elements of the comments section. We
were not able to exploit this vulnerability to any meaningful gain. However,
it still might have severe consequences depending on the embed environment.
OWASP writes that CSS injections “may lead to cross site scripting or data
exfiltration”[20]. The CSS injection vulnerability has been eliminated by strictly
parsing the color attribute contents to match only 6-character hex color codes.

Fuzz Testing

In order to solidify confidence in the correctness of the client’s HTML sanitization,
we wrote fuzzing tests (also known as parameterized tests) for the sanitization
functions.

These tests generate structured HTML trees with a mix of valid and invalid
attributes and tag values. The fuzzers favor irregular input, such as uncommon
characters and extreme list / string lengths. Our test expectations assert that
the sanitized output contains all of the valid tags and attributes present in the
input, and that the output contains no invalid tags or attributes.

16See section 13.2.1.7: m.room.message msgtypes[2]

35

Handling Formatted Messages Cactus Comments

We immediately discovered an unexpected problem: the sanitization perfoms
poorly on large input sizes - especially on wide HTML trees. We observed the
javascript repeatedly process exceeding 2 gigabytes of memory usage, inducing a
fatal crash. This was not the type of security issue we were expecting to discover,
but it is a security issue nonetheless. Since it threatens the availability of the
system, it can be classified as a denial-of-service attack. The threat scenario
has an attacker submit an sufficiently wide HTML tree in a comment, wasting
memory resources of client machines and denying all instances of the web client
access to the malicious comment’s neighboring content.

Performance Optimizations

Recognizing that Elm as a purely functional language exclusively uses value
semantics, it becomes apparent that the memory issue comes from persisting
a large number of stack frames - each containing copies of HTML tree values
- when traversing a large HTML tree. Seeing as Elm does not allow mutation,
we took on the task of re-implementing the function in a tail-recursive manner.
This would allow us to make use of tail-call elmination in the Elm compiler, to
free unnecessary parent stack frames.

It turns out that traversing a rose-tree data structure in a tail-recursive manner is
not a trivial problem. It took a considerable amount of research and development
time to arrive at two new implementations, each exhibiting an advanced recursion
style:

One implementation is in a continuation-passing style, where the recusive call is
given a partially applied function (the continuation). The continuation represents
the composed transformations to the HTML tree, and is finally executed at the
bottom of the tree.17

The other implementation simulates a “frame” of already mapped and not yet
mapped children of each element, as well as a current value. It employs tail call
recusion on iterating over children at each element, as well as a tail recursive
descent operation.18

With three implementations of the same functionality, and a parameterized
testing suite, we can begin to compare their performance. Both of the optimized
implementations did show shorter run-times on large inputs than the naive
implementation. However, neither of the new implementations could handle
the largest tree-size that the fuzz testing suite would generate. When using
randomized seeds for the input, the fuzz tests suite would still regularly fail all
three implementations on the same memory error.

17The source code of this function can be found at commit ‘dc343e5‘ of the git repository in
the appendices.

18The source code of this function can be found at commit ‘e9d7719‘ of the git repository in
the appendices.

36

Handling Formatted Messages Cactus Comments

Limiting the Problem

Examining the fuzzing test input generator reveals a combinatorial explosion.
The entire generator is composed from a number of nested primitive generators.
Each individual list generator can generate lists with up to three hundred
elements, and each string generator can generate strings with several hundred
elements as well. The Matrix specification states that org.matrix.custom.html
formatted messages can be at nested at most 100 times. In the largest possible
case, the fuzzer outputs an html tree with depth 100, at each level an element
with 300 children and 300 attributes of a combined 600 characters each.

Assuming only non-unicode characters, each element has a maximum size of
~180 kilobytes, not counting it’s children. The entire tree has a branching factor
of 300. At depth 100, the total number of elements will 300100, and the total
size of the tree is 180kb · (300100).

This is an extremely large input size19, and entirely unrealistic to be received in
a single HTTPS packet (yet alone contained using computers on earth). This
shows that the fatal performance issues was in the fuzzer attempting to generate
impossible amounts of data.

When asking “What is the largest possible message event size?”, the Matrix spec
answers 65536 bytes[2]. Thus, the fuzzing tests were rewritten to limit the input
sizes to realistic values.

Selecting an Implementation

In selecting a final formatted message sanitization implementation, the following
criteria are taken into account, in prioritzed order:

1. Security correctness / robustness
2. Code maintainability
3. Resource efficiency

In order to select a compare the implementations, all three function were tested
again using the new, smaller fuzz testing suite. A total of 10,000 test cases was
generated and run against each implementation. All three runs were done the
same computer, with no user interaction at run-time. Below are the summarized
results:

Implementation Git commit Completion time Average time per test
Naive 2063dae 120474ms 12.0474ms
Continuation-passing dc343e5 121781ms 12.1781ms
Frame-based f97a1ab Failed Failed

The frame-based implementation was not able to pass all ten thousand test
19Totalling some 9.3 × 10241yottabytes.

37

Handling Formatted Messages Cactus Comments

cases, due to select edge cases discovered by the fuzzer. This bug was not readily
apparent, and has not been resolved. This implementation was discarded on
grouds of not being correct, and of being difficult to maintain (and thus difficult
to coerce into a correct state).

Comparing the two remaining implementations shows only a negligible difference
in runtime. For the purposes of this comparison, the two implementations are
considered equal in performance. Seeing as they both pass all tests, they can be
assumed to also be equal in correctness. Finally, we consider the maintainability
differences. The naive recursion is far shorter and more easily readable than the
continuation-passing style. Having shown a small number of Elm programmers
both implementations, all agreed that the continuation-passing style was difficult
to understand.

Being equal on all counts except one (on small input sizes), maintainability
becomes the deciding factor. Having a more direct and understandable function
will make it simpler to extend the functionality in the future - for instance to
support upcoming features like LATEX rendering[9].

For these reasons, the two optimized implementations have been discarded in
favor of the original, naive implementation.

Accessibility

The web client uses the libraries tesk9/accessible-html[15] and
tesk9/elm-html-a11y[16] to ensure that the comments section is acces-
sible to persons who are restricted to interacting with it by unconventional
means (e.g. using a screenreader).

These libraries contain wrappers around the functions usually used to construct
HTML elements. It uses the type functionality in Elm to provide compile-time
guarantees about the accessibility of the rendered HTML. For instance, one
cannot construct an img tag without a description of the image content.

38

Cactus Comments

Experiments
A series of experiments have been conducted, in order to confirm the properties
of the comment system. The experiments have been designed to illustrate Cactus
Comments’ properties regarding the six problems identified in the Problem
Analysis section of this report.

All seven experiments are qualitative experiments, as we are interested in con-
firming our assumptions on how the system performs in conjunction with the
Matrix network. We are not interested in measuring the performance or practical
scalability of the system. The qualitative experiments highlight capabilities
afforded to the system by using the Matrix network.

The experiments were designed and conducted in collaboration with Carl Bordum
Hansen.

Setup
The following experiments all use the same setup, in which we have three
homeservers, with one or two user accounts each. We also have a user with no
Matrix account.

Homeserver A A homeserver managed by the website owner. This homeserver’s
URL is passed to the web client’s defaultHomeserverUrl parameter. This is also
the homeserver which has an instance of the appservice attached. Homeserver
A’s hostname is A.com.

Homeserver B A completely independent homeserver, which initially has never
communicated with any users on homeserver A or C. Homeserver B’s hostname
is B.com.

Homeserver C A completely independent homeserver, which initially has never
communicated with any users on homeserver A or B. Homeserver C’s hostname
is C.com.

User “Alice” Alice is a user with a Matrix account on homeserver A. Alice’s
user id is @alice:A.com.

User “Bob” Bob is a user with a Matrix account on homeserver B. Bob’s user
id is @bob:B.com.

User “Charlie” Charlie is a user with a Matrix account on homeserver C.
Charlie’s user id is @charlie:C.com

User “Carol” Carol is a user with a Matrix account on homeserver C: Carol’s
user id is @carol:C.com

User “Grethe” Grethe is a user who does not have a Matrix account, and will
use the comment system via a guest account.

39

Experiment 1: Authenticate Using an Existing Matrix AccountCactus Comments

Experiment 1: Authenticate Using an Existing Matrix Ac-
count
Purpose

To show that Cactus Comments does not require users to have identities on any
specific server. Users may authenticate using Matrix accounts on any homeserver.

Hypothesis

If a user creates a Matrix account using a client and homeserver unknown to the
comment system, that user can log in to the Cactus Comments web client, using
their existing Matrix credentials.

Method

1. Charlie accesses a web page with the web client embedded.
2. Charlie clicks the “Log In” button and provides the credentials and home-

server URL for their existing Matrix account.
3. Charlie posts a comment using the web client.
4. Grethe accesses the same web page as Charlie.
5. We observe whether Charlie’s comment is visible to Grethe.

Result

A single run of the procedure was executed, yielding results that match the
expectation stated by the hypothesis. Charlie’s comment is displayed in Grethe’s
web browser, along with their display picture and display names. The experiment
supports the stated hypothesis.

40

Experiment 2: Convenient Cross-platform Follow-ups Cactus Comments

Experiment 2: Convenient Cross-platform Follow-ups
Purpose

To show that the comment system allows for convenient follow-ups, by being
available across more than one client on more than one platform.

Hypothesis

When a user has participated in a comment section, they can be notified by
further activities in the same comment section, by using other Matrix clients.

Method

1. Alice logs in using the Matrix client Element[12] on her phone.
2. Alice logs in using the Cactus Comments web client.
3. Alice posts a comment.
4. Bob posts a comment mentioning Alice.
5. We observe whether Alice is notified of the comment via the Element

application.

Result

The experiment was conducted once. We observe that Alice is notified of the
replying comment. Element shows a push notification on Alice’s phone, with
the contents of Charlie’s comment. This supports the stated hypothesis.

41

Experiment 3: Continued Conversation while the Default Homeserver is OfflineCactus Comments

Experiment 3: Continued Conversation while the Default
Homeserver is Offline
Purpose

To show that the comment system remains available to users who have previously
visited a particular comments section - despite service disruption of the default
homeserver. The experiment will also show that federation is independent of the
default homeserver.

Hypothesis

If two homeservers which have previously joined a comment section exchange
messages while the default homeserver is unavailable, and the default homeserver
becomes available after the fact, then the Cactus Comments web interface will
show new guests the messages which have been exchanged while the default
homeserver was offline.

Method

We perform the following steps:

1. Bob logs in using the web client, and posts a comment.
2. Charlie logs in using the web client, and posts a comment.
3. Homeserver A is turned off.
4. Bob responds to Charlie’s comment using Element[12].
5. Charlie responds to Bob’s response using Fluffychat[13].
6. Homeserver A is turned back on.
7. Grethe visits the webpage. We record which comments are displayed to

Grethe.

Result

The experiment was carried out once. We observe that Grethe’s web browser
displays the comments posted by Charlie and Bob, while Homeserver A was
turned offline. These results match our expectations, and support the stated
hypothesis.

42

Experiment 4: First-time Access by Invite while the Default Homeserver is
Unavailable Cactus Comments

Experiment 4: First-time Access by Invite while the De-
fault Homeserver is Unavailable
Purpose

To demonstrate that Cactus Comments is resilient to service disruption of the
default homeserver.

Specifically, we demonstrate that a new user can join the comments section
for the first time, while the default homeserver is unavailable, if an existing
participant explicitly invites the new user.

Particularly interesting is the fact that the new user does not need to know the
existing participant. Only the participant needs to know the user id of the new
user. The relationship is one-way.

Hypothesis

If a new user is directly invited to participate in a comments section by an
existing participant while the default homeserver is down, that user can gain
full access to the comments section.

Method

1. Bob logs in using the web client and posts a comment.
2. Homeserver A is turned off.
3. Bob uses the Fluffychat[12] client to invite Charlie to the Matrix room.
4. Charlie uses the Element[13] client to join the room and post a comment.
5. Homeserver A is turned back on.
6. Grethe accesses the web content with the comment section attached. We

record the displayed comments.

Results

When Grethe accesses the webpage with the comments section, her browser
displays both Bob and Charlie’s comment. This shows that Charlie was able to
participate in the comments for the first time, while the default homeserver was
unavailable. This outcome supports the stated hypothesis.

43

Experiment 5: First-time Access via Alternate Alias while the Default
Homeserver is Unavailable Cactus Comments

Experiment 5: First-time Access via Alternate Alias while
the Default Homeserver is Unavailable
Purpose

To demonstrate that Cactus Comments is resilient to service disruption of the
default homeserver.

Specifically, to show that the comment section can be accessed by a new user, if
the new user can discover an alternate room alias, which points to the comment
section room. The key point here, is that no existing participants need to know
the new user directly, in order for the new user to join. The relationship is
one-way.

Hypothesis

If a new user joins the comment section room using an alternate room alias,
while the default homeserver is unavailable, then the new user can access to the
comment section.

Method

1. Bob logs in using the web client and posts a comment.
2. Homeserver A is turned off.
3. Bob uses the Element[12] client to assign another room alias to the comment

section room.
4. Bob broadcasts the new room alias to the public (e.g. via Twitter).
5. Charlie sees Bob’s broadcast, and joins the comment section room via the

Element[12] client.
6. Charlie posts a comment.
7. Homeserver A is turned on.
8. Grethe visits the website with the comment section in use. We record the

displayed comments.

Results

The procedure is performed once, yielding the expected results. We observe that
both Bob and Charlie’s comments are shown in Grethe’s browser. This means
that Charlie was able to join the room, by using the room alias created by Bob,
with only a one-way affiliation relationship to Bob. This outcome support the
stated hypothesis.

44

Experiment 6: Resilience to Application Service Disruption Cactus Comments

Experiment 6: Resilience to Application Service Disruption
Purpose

To demonstrate that an existing comment section continues to function while
the application service is inaccessible.

Hypothesis

If the application service is inaccessible, existing comment sections remain
available and interactive.

Method

1. The Cactus Comments Application Service is turned off.
2. Alice logs in using the web client, and posts a comment.
3. Bob logs in using the web client, and posts a comment.
4. Grethe visits the website, and records which comments are displayed.

Result

The procedure is carried out once, yielding results that match the expectations.
In step 4, Grethe’s web browser displays both of Alice and Bob’s comments.
This shows that an existing comment section remains available for reading and
posting comments, despite the appservice being unavailable. This confirms the
stated hypothesis.

45

Experiment 7: Application Service Moderation State PersistenceCactus Comments

Experiment 7: Application Service Moderation State Per-
sistence
Purpose

To demonstrate that the comment system continues to function, despite service
disruption to the application service. Specifically, that the comment system
continues to enforce existing moderation policies.

Hypothesis

If a user has been banned from from all comment sections in a registered
namespace, and the appservice subsequently becomes unavailable, then the user
remains banned from all comment sections in the registered namespace.

Method

1. Bob logs in using the web client and posts a comment.
2. Alice bans Bob from the comment section room, using the Element

client[12].
3. The application service is turned off.
4. Bob tries to comment in a different comment section, than used in step 1.

Results

When Bob tries to comment in step 4, he is met with an error message:

M_BAD_STATE: Cannot join user who was banned.

This shows that the homeservers enforce the moderation policies set by the
application service, even when the application service itself is inaccessible.

46

Cactus Comments

Discussion
This chapter goes over the observed qualities of the Cactus Comments system
as a whole, in order to arrive at an evaluation of how well the system tackles the
stated problems, and how the system compares to existing solutions.

In the first section, we use the existing experiments as a basis for assessing
how failure of various components affects the system as a whole, and what
requirements must be met to allow the system to recover.

The second section goes through each of the six identified problems, and discusses
whether and how Cactus Comments performs in regards to each.

Finally, we compare Cactus Comments to the three analysed existing Comment
Systems, for an overall assessment of its fitness.

Disruption Scenarios
As a distributed system, Cactus Comments has some interesting robustness and
redundancy properties. To clarify exactly what these are, we go through three
different disruption scenarios. For each scenario, we will describe the reaction of
the system as a whole.

Unavailable Application Service

We consider the scenario where the Cactus Comments appservice is offline. This
could happen either through hardware failure, network errors, failure of the
associated homeserver, software bugs in the appservice, or a number of other
reasons.

Experiments 6 and 7, detailed in the Experiments chapter, demonstrate that
essential features of the comment system continue to function, despite disruption
of the appservice. Experiment 6 shows that users can still interact with existing
comment sections while the Cactus Appservice is inaccessible. Experiment 7
shows that moderation policies are still enforced while the Cactus Appservice is
inaccessible.

We claim that users with sufficient power levels may still manipulate moderation
roles, as well as ban, unban or kick users, while the appservice is inaccessible.
However, as long as the appservice is inaccesible, these changes will be per-room.

On-demand room creation is not available, while the appservice is offline. If
the website owner were to add the web client to a new page (with a new
commentSectionId), the client would fail to create or access a room, and instead
display a human-readable M_NOT_FOUND error message, which includes the room
alias it tried to access. The site owner can create this room alias manually, if
the appservice is entirely dissociated from the homeserver. Otherwise, the alias
is in a namespace reserved for use by the appservice.

47

Disruption Scenarios Cactus Comments

If moderation changes are made to a room, while the appservice is offline, the
homeserver will retry the request (with an exponential back-off timer), until it
succeeds. In this way, changes made while offline will still be replicated across
other rooms in the namespace, when the appservice comes online again.

The Cactus Comments system only takes a convenience loss, if the appservice is
not used. Without the appservice, site owners must create each comment section
room manually, and moderation policies can only be set on a per-comment-
section basis. The appservice can be considered a non-essential component of
the system as a whole.

Unavailable Default Homeserver

Experiments 3, 4, and 5 demonstrate that Cactus Comments is resilient to service
disruption of the default homeserver20.

Experiment 3 shows that users who have already joined the comment section
room can continue to participate in the conversation while the default home-
server is down, provided that those users have accounts on other homeservers.
Experiments 4 and 5 show that users who have not already joined the comment
section (and also use different homeservers from the default homeserver), may
join the comment section room, provided that a one-way information flow exists
between the new user and an existing participant: either the existing participant
knowing the user id of the new user, or the new user knowing a current room
alias of the comment section room.

The demonstrated resilience scenarios all require the room to be federated to at
least one other homeserver. This happens when at least one user from another
homeserver logs in to the web client. Once this condition is met, the entire room
history is stored on its entirety on two different servers. If this condition is not
met, the data is only stored on the disks of the default homeserver and not
replicated to any other homeserver. Thus, the resilience to loss of the default
homeserver depends on users using different homeservers.

Unavailable Website

A scenario which was not covered by any of the experiments, is the failure of
the embedding website. For instance, if the webserver should fail to serve the
web content, the DNS name fail to resolve to the correct address or simply if
the website owner decides to permanently shut down the website.

This scenario makes the web client unavailable. Thus, users can not discover the
comment section in the same place as the web content - but in this scenario the
web content is also not available.

20The default homeserver is the homeserver found at the URL provided to the web client as
the defaultHomeserverUrl configuration parameter. It is used for anonymous access to the
room.

48

Tackling the Identified Problems Cactus Comments

Assuming the homeserver is hosted separately from the rest of the website
infrastructure, the comment section the continue to be available to existing users
and new users who can discover the room. If the homeserver has also become
unavailable, the behavior described in the previous section applies.

Federating Comments Through Malicious Homeservers

It is feasible for a Matrix homeserver administrator to intentionally disturb the
flow of information to their clients. For instance, a malicious homeserver admin
might cease to send events from a specific comment section, if that comment
section is found to have disagreeable content. Since Cactus Comments is not
(as of v0.3.0) capable of interacting with end-to-end-encrypted rooms, there is
no cryptographic integrity measure for individual messages. Thus, a malicious
homeserver might also intercept messages and alter their contents.

This scenario is not mitigated by Cactus Comments in any way. However, it will
only affect the direct users of the malicious homeserver. Federation events in
the Server-Server API are cryptographically signed, so the malicious homeserver
cannot man-in-the-middle (MITM) messages that are being relayed through it
from one homeserver to another.

Tackling the Identified Problems
This section goes through the six problems identified in the Problem Analysis
chapter, and discusses how Cactus Comments tackles this problem, and to what
degree the problem is solved.

Identity Fragmentation

Cactus Comments relies on Matrix accounts for identities. Due to Matrix’s
federated architecture, a Matrix account can be managed by any homeserver.
This means that users have the freedom to decide which homeserver to trust
with their credentials.

Accounts are not tied specifically to Cactus Comments, but rather can be
used with any application compatible with Matrix. Because Matrix has been
designed with interoperability in mind, this includes a wide range of other social
networks.[30]

Using Cactus Comments reduces identity fragmentation, simplifies identity reuse,
and gives the user a greater degree of control over where their account data and
credentials are stored and verified.

Inconvenient Follow-ups

Cactus Comments is able to leverage a wealth of existing Matrix clients, allowing
the user to interact with the comment section from almost any other native
Matrix client. Many of these support notifying users of new events. [?]

49

Tackling the Identified Problems Cactus Comments

Using Cactus Comments makes following up on a comment section conversation
more convenient. It does this by giving the user several options on how to
interact with the comment section, and by using a platform that supports several
mechanisms for push notifications.

Fragility

In the event of a service disruption to the Cactus Comments application service,
all existing comment sections remain available to existing and new users. If the
appservice is not accessible, the system as a whole only loses the ability to create
new comment sections on-demand, and the convenience feature of automatically
replicating moderation policies across all the comment sections of a site.

In case the default homeserver should become inaccessible, the comment section
remains available to all existing users whose homeservers are still in a functioning
state. New users may also join the conversation during a homeserver outage,
provided that some prerequisite conditions are met.

Cactus Comments is highly resilient to service disruption.

Data Disappearance

Comment sections in the Cactus Comments system are also resilient to the
permanent disappearance of the entity proving the web content. As long as there
are homeservers federating the room, the data persists. The continued existence
of comments exchanged using the Cactus Comments system is not dependant
on the continued functioning of any component of Cactus Comments.

Censorship

In Cactus Comments, moderation control is given to the registrant of the
moderation namespace. Website owners are not forced to give any single party
complete control over the allowed content in their comment sections.

However, we cannot rule out the possibility of federating with a homeserver
which could censor or alter the comments being displayed to their direct users.
So we cannot guarantee that no external filtering or manipulation of the content
is taking place. However, this only manipulation would only affect a subset of
the users and not all users. In the end, the users may chooses which homeservers
to trust with their data.

Cactus Comments only partially solves the problem of external censorship.
Although no external party can force censorship of comments for all potential
users, an external party might be able to perform a man-in-the-middle attack
to censor content for a specific subset users, who have explicitly placed trust in
said censoring party.

50

Tackling the Identified Problems Cactus Comments

Limited Interaction Options

Because Cactus Comments builds on an open standard, there is no hard limit to
the number of compatible clients that may exist. There is already a number of
existing compatible clients, with different accessibility advantages. Users with
special needs have a high degree of freedom in choosing how they want to interact
with the comment sections.

Because Cactus Comments is built on Matrix, it already has a high number of
existing interaction options, and there is no limit to the number of interaction
options that may exist.

Comparison to Existing Solutions

. Disqus Facebook Commento Cactus Comments
Identity Fragmentation X X X
Inconvenient Follow-ups X Email-based
Fragility X X X
Data will disappear X X
3rd party censorship X X Homeserver MITM
Limited interaction options X X X

51

Cactus Comments

Conclusion
We investigated the current state of embeddable web comments systems, and
analyzed three specific comment systems to identify six widespread problems.
We set out to design a solution that solves or reduces the severity of these
problems. A design was made for a decentralized web comments system, which
can replicate comment data to users’ servers, by federating messages over the
Matrix network. The system, named Cactus Comments, was implemented and
tested. Seven experiments were conducted to verify correct functioning and fault
tolerance of the system. We find that Cactus Comments solves or improves all
six of the identified problems, and argue that Matrix is a good fit for embeddable
web comments.

Future work
Other Applications of Matrix for Web-Embedded Commu-
nications
The problems burdening the existing market for web comments might also
affect other use cases where embeddable web communications systems are used.
Similar problems might gain similar advantages from solutions built using Matrix.
Similar use cases include chats sections for live video streams, customer support
chat systems, product reviews sections for e-commerce websites. In general,
systems that have humans communicate in an ad-hoc manner via an embeddable
web client might be suitable applications for the Matrix protocol.

Message-level Cryptographic Secrecy and Integrity
The Cactus Comments was designed to not use any of the end-to-end encryption
features that Matrix provides. Comment sections in Cactus Comments are
inherently public data, so it was assessed that encryption was not a necessary
feature.

However, this also leaves Cactus Comments with no mechanism for verifying
that individual messages have not been manipulated by the direct homeservers
of a message’s sender or receiver. The Matrix standard does specify APIs for
out-of-band key verification, as well as a standard for signing and encrypting
messages.[2]

Cactus Comments could make use of these to mitigate the possibility of home-
server admins forging messages sent to its’ users. Additionally, the encryption
features could be used to allow comment section rooms to be private, for instance
to support secret internal comment sections, as part of an intranet system.

52

MSC1772: Matrix Spaces Cactus Comments

MSC1772: Matrix Spaces
Currently, one of the Cactus Comments appservice’s responsibilities is to propa-
gate power levels and ban lists across a range of associated Matrix rooms. There
is work in place to make this appservice functionality obsolete, by adding similar
behavior to homeservers.

The Matrix Specification Change proposal 1772 (MSC1772)[11] introduces
the concept of Matrix Spaces. A Space is hierarchical structure of rooms,
where relationships between rooms are defined through m.space.child and
m.room.parent events. The proposal introduces a mechanism for managing
power levels and ban lists across all of the rooms associated with a space.

MSC1772 is seeing a lot of support from the Matrix community, and the consensus
seems to be that the change will be accepted in the first half of 2021. Once this
lands in the Matrix specification and common homeservers, Cactus Comments
should begin to support managing moderation via Spaces, and the previous
custom logic should be deprecated. This will again increase compatability with
existing software developed for Matrix, by managing moderation cross rooms in
a standardized way.

MSC2753: Peeking Via Sync
A current restriction of the Cactus Comment system is that the appservice must
be registered with the default homeserver, for anonymous read access to the
comment section room to work.

This related to anonymous users not joining the room, but just “peeking” or
“previewing” it. Peeking into a room lets users read the messages of a public
room without joining it. This is essential for guest access. The alternative is
letting each guest user join the room, which would generate a membership event
for each page load of the website which contains the comment section. Apart
from bloating storage use, this renders the comment section room unreadable
in most existing clients. It is essential for guest users to peek into the room,
without joining it.

However, Matrix does not currently support peeking over federation. This
means that guest access must happen via a homeserver which is guaranteed to
have already federated the room. MSC 2753 sets out to resolve this issue, by
implementing logic that allows homeservers to support peeking into rooms over
federation.[10][2]

When this specification change is implemented, it should allow the web client
to to read the comment section rooms anonymously via any homeserver that
supports guest registration. The configuration API is already designed with this
separation between the default homeserver URL, and the server name to be used
when determining the room alias.

53

REFERENCES Cactus Comments

References
[1] Matrix.org

Matrix Specification
https://matrix.org/docs/spec/
(last accessed 2020-09-25).

[2] Matrix.org
Matrix Specification: Client-Server API r0.6.1
https://matrix.org/docs/spec/client_server/r0.6.1
(last edited 2020-05-27, last accessed 2020-09-25).

[3] Matrix.org
Matrix Specification: Application Service API r0.1.2
https://matrix.org/docs/spec/application_service/r0.1.2
(last edited 2019-06-30, last accessed 2020-09-25).

[4] Matrix.org
Matrix Specification: Appendices
https://matrix.org/docs/spec/appendices
(last accessed 2020-11-24).

[5] Matrix.org
Matrix Specification: Application Service API r0.1.2 Registration Section
https://matrix.org/docs/spec/application_service/r0.1.2#registration
(last edited 2019-06-30, last accessed 2020-09-25).

[6] Matrix.org
Matrix Specification: Application Service API r0.1.2 Authorization
Subsection
https://matrix.org/docs/spec/application_service/r0.1.2#authorization
(last edited 2019-06-30, last accessed 2020-09-25).

[7] Matrix.org
Matrix Specification: Application Service API r0.1.2 Pushing events
Subsection
https://matrix.org/docs/spec/application_service/r0.1.2#put-matrix-app-
v1-transactions-txnid
(last edited 2019-06-30, last accessed 2020-09-25).

[8] Matrix.org
Matrix Specification: Federation API r0.1.4
https://matrix.org/docs/spec/server_server/r0.1.4

54

https://matrix.org/docs/spec/
https://matrix.org/docs/spec/client_server/r0.6.1
https://matrix.org/docs/spec/application_service/r0.1.2
https://matrix.org/docs/spec/appendices
https://matrix.org/docs/spec/application_service/r0.1.2#registration
https://matrix.org/docs/spec/application_service/r0.1.2#authorization
https://matrix.org/docs/spec/application_service/r0.1.2#put-matrix-app-v1-transactions-txnid
https://matrix.org/docs/spec/application_service/r0.1.2#put-matrix-app-v1-transactions-txnid
https://matrix.org/docs/spec/server_server/r0.1.4

REFERENCES Cactus Comments

(last edited 2020-05-27, last accessed 2020-09-25).

[9] Matrix.org
Matrix Specification Change Proposal MSC2919: Markup for mathematical
messages
https://github.com/uhoreg/matrix-doc/blob/latex/proposals/2191-
maths.md
(last edited 2020-10-24, last accessed 2020-11-17).

[10] Matrix.org
Matrix Specification Change Proposal MSC2919: Peeking via sync (take 2)
https://github.com/matrix-org/matrix-doc/blob/matthew/msc2753/propo
sals/2753-peeking-via-sync-v2.md
(last edited 2020-11-26, last accessed 2020-12-20).

[11] Matthew Hodgson et al.
MSC1772: Matrix spaces
https://github.com/matrix-org/matrix-doc/pull/1772
(last updated 2020-11-17, last accessed 2020-11-18).

[12] Element
Element.io Webpage
https://element.io
(last accessed 2020-11-18).

[13] Fluffychat
Fluffychat.im Webpage
https://fluffychat.im
(last accessed 2020-12-16).

[14] Ecmel Berk Canlıer
Use the Fediverse as a comment section
https://ecmelberk.com/fediverse-comments.html
(posted 2020-06-21).

[15] Tessa Kelly
tesk9/accessible-html
ht tp s : / /pa ck ag e . e lm - l a ng . o r g /packa ge s / t e sk 9/ac c e s s i b le -
html/latest/Accessibility
(last updated 2018-09-24, last accessed 2020-10-28).

55

https://github.com/uhoreg/matrix-doc/blob/latex/proposals/2191-maths.md
https://github.com/uhoreg/matrix-doc/blob/latex/proposals/2191-maths.md
https://github.com/matrix-org/matrix-doc/blob/matthew/msc2753/proposals/2753-peeking-via-sync-v2.md
https://github.com/matrix-org/matrix-doc/blob/matthew/msc2753/proposals/2753-peeking-via-sync-v2.md
https://github.com/matrix-org/matrix-doc/pull/1772
https://element.io
https://fluffychat.im
https://ecmelberk.com/fediverse-comments.html
https://package.elm-lang.org/packages/tesk9/accessible-html/latest/Accessibility
https://package.elm-lang.org/packages/tesk9/accessible-html/latest/Accessibility

REFERENCES Cactus Comments

[16] Tessa Kelly (tesk9)
tesk9/elm-html-a11y
https://package.elm-lang.org/packages/tesk9/elm-html-a11y/latest/
(last updated 2018-09-24, last accessed 2020-10-28).

[17] Héctor Ramón (hecrj)
hecrj/html-parser 2.4.0
https://package.elm-lang.org/packages/hecrj/html-parser/2.4.0/
(last updated 2020-08-07, last accessed 2020-11-05).

[18] Evan Czaplicki
elm-lang.org
https://https://elm-lang.org/
(last accessed 2020-11-25).

[19] The OWASP Foundation.
OWASP Top Ten
https://owasp.org/www-project-top-ten/
(last accessed 2020-11-05).

[20] The OWASP Foundation.
WSTG - v4.1: Testing for CSS Injection
https://owasp.org/www-project-web-security-testing-guide/v41/4-
Web_Application_Security_Testing/11-Client_Side_Testing/05-
Testing_for_CSS_Injection
(last accessed 2020-11-05).

[21] Web Hypertext Application Technology Working Group (WHATWG).
HTML Section 13: Syntax.
https://html.spec.whatwg.org/multipage/syntax.html
(last updated 2020-11-04, last accessed 2020-11-05)

[22] Facebook.
Facebook for Developers: Comments.
https://developers.facebook.com/products/social-plugins/comments/
(last accessed 2020-12-02).

[23] Disqus.
Disqus.com
https://disqus.com/
(last accessed 2020-12-02).

56

https://package.elm-lang.org/packages/tesk9/elm-html-a11y/latest/
https://package.elm-lang.org/packages/hecrj/html-parser/2.4.0/
https://https://elm-lang.org/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/05-Testing_for_CSS_Injection
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/05-Testing_for_CSS_Injection
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/05-Testing_for_CSS_Injection
https://html.spec.whatwg.org/multipage/syntax.html
https://developers.facebook.com/products/social-plugins/comments/
https://disqus.com/

REFERENCES Cactus Comments

[24] Commento.
Comment.com
https://commento.io/
(last accessed 2020-12-02).

[25] Disqus.
Disqus Incident History.
https://status.disqus.com/history
(last asccessed 2020-12-02).

[26] Disqus.
Disqus Terms of Service.
https://help.disqus.com/en/articles/1717102-terms-of-service
(last asccessed 2020-12-02).

[27] India Today.
Many Indians are moving to Mastodon from Twitter: Why, what is Mastodon
and how it works.
https://www.indiatoday.in/technology/features/story/snapdragon-888-5g-
from-gaming-to-photography-how-the-new-qualcomm-soc-will-improve-
android-phones-in-2021-1746133-2020-12-02
(published 2019-11-8, last accessed 2020-12-02).

[28] Vice.
Gab Is the Alt-Right Social Network Racists Are Moving to
https://www.vice.com/en/article/ywxb95/gab-is-the-alt-right-social-
network-racists-are-moving-to
(published 2019-4-5, last accessed 2020-12-02).

[29] The Perspectives Project
The Perspectives Project.
https://perspectives-project.org/
(last accessed 2020-12-05).

[30] Matrix.org
Bridges | Matrix.org
https://matrix.org/bridges/
(last accessed 2020-12-18).

[31] Matrix.org
Clients | Matrix.org
https://matrix.org/clients/
(last accessed 2020-12-18).

57

https://commento.io/
https://status.disqus.com/history
https://help.disqus.com/en/articles/1717102-terms-of-service
https://www.indiatoday.in/technology/features/story/snapdragon-888-5g-from-gaming-to-photography-how-the-new-qualcomm-soc-will-improve-android-phones-in-2021-1746133-2020-12-02
https://www.indiatoday.in/technology/features/story/snapdragon-888-5g-from-gaming-to-photography-how-the-new-qualcomm-soc-will-improve-android-phones-in-2021-1746133-2020-12-02
https://www.indiatoday.in/technology/features/story/snapdragon-888-5g-from-gaming-to-photography-how-the-new-qualcomm-soc-will-improve-android-phones-in-2021-1746133-2020-12-02
https://www.vice.com/en/article/ywxb95/gab-is-the-alt-right-social-network-racists-are-moving-to
https://www.vice.com/en/article/ywxb95/gab-is-the-alt-right-social-network-racists-are-moving-to
https://perspectives-project.org/
https://matrix.org/bridges/
https://matrix.org/clients/

REFERENCES Cactus Comments

[32] Eagain.net
Git for Computer Scientists
https://eagain.net/articles/git-for-computer-scientists/
(last accessed 2020-12-20).

[33] Kript Team
What is a Directed Acyclic Graph
https://medium.com/kriptapp/guide-what-is-directed-acyclic-graph-
364c04662609
(last accessed 2020-12-20).

[34] oxalorg
Sakura
https://github.com/oxalorg/sakura
(last accessed 2020-12-20).

[35] MkDocs.org
MkDocs - Project documentation with Markdown
https://www.mkdocs.org/
(last accessed 2020-12-20).

[36] IPFS.io
IPFS Powers the Distributed Web
https://ipfs.io/
(last accessed 2020-12-20).

[37] AreWeDistributedYet.com
Are We Distributed Yet?
https://arewedistributedyet.com/
(last accessed 2020-12-20).

[38] Pinata
Pinata - The Easiest Way to Use IPFS
https://pinata.cloud/
(last accessed 2020-12-20).

[39] Drew DeVault
The unrealized potential of federation
https://drewdevault.com/2020/09/20/The-potential-of-federation.html
(last accessed 2020-12-20).

58

https://eagain.net/articles/git-for-computer-scientists/
https://medium.com/kriptapp/guide-what-is-directed-acyclic-graph-364c04662609
https://medium.com/kriptapp/guide-what-is-directed-acyclic-graph-364c04662609
https://github.com/oxalorg/sakura
https://www.mkdocs.org/
https://ipfs.io/
https://arewedistributedyet.com/
https://pinata.cloud/
https://drewdevault.com/2020/09/20/The-potential-of-federation.html

Cactus Comments

Appendix A: Application Service Implementa-
tion
In this chapter, we will describe how the application service behind Cactus
Comments has been implemented. This includes design choices, technology
choices, UX decisions and state modelling.

Responsibility and purpose
Remember that application services are passive observers of events on a home-
server. They define namespaces that they have full control over. They listen to
all events in their namespace. In our case, the namespace is a set of rooms.

The Cactus Comments application service implements the Application Service
API and acts as a client through the Client-Server API.

The purpose of the Cactus Comments application service is to manage comment
rooms in collaboration with the homeserver. Its primary responsibility is to
create rooms on-demand and to make sure the right users are moderators in the
right rooms.

Everyone who participates in a comment section are indirectly interacting with
the application service. This happens as all events are sent to the application
service by the homeserver. Furthermore, the service should provide a user
interface for site administrators and room moderators to interact with. We do
this in a specially designated moderation room.

Figure 4: Asking our friendly chat bot for help, using the Element client.

Promoting users in the moderation room should promote them in all rooms
for the site. When a moderator bans a user in one room, that user should be
banned across all the rooms for the site.

When a user is the first to join a particular room in our namespace, we do not
create the room if it is a moderation room, but we do if its a room for an already

59

Application service registration Cactus Comments

registered site. The new room is created such that the moderation settings
match those provided by the owner of the site.

From here on out, the service needs to make sure there are no discrepancies
between the room states and the desired moderation policies.

Application service registration
Application services have to be registered with homeservers[?]. Because applica-
tion services have elevated privileges the server admin has to statically configure
them. Otherwise, they would be able to snoop on rooms unbeknownst to the
participants. Most importantly, Our application service defines a room alias
namespace. Defining a room alias namespace gives our service privileges to
manage any room in the namespace. This namespace is exclusive meaning
humans and other applications can not create and delete rooms in our namespace.

The application service can be registered with any regular expressions. This
regular expressions describes which room aliases are in our namespace. While it
can be anything, the default is #comments_.* and we will use that in examples.
It is configurable.

User experience: initial setup
When designing Cactus Comments, it was important for us that new comment
sections could be created dynamically, so a site admin does not need a workflow
when creating a new subsite. To this end, we designed our system such that
the site admin only needs to register their site the first time. This one-time
procedure requires the admin to send a message to our chat bot interface. After
typing “register demosite”, the bot will invite the admin to a new room, send a
helpful message and promoto the user to admin. This is an image of Element
after the admin joins the new room:

Figure 5: A website owner registering a site with the application service, using
the Element client.

60

User experience: initial setup Cactus Comments

After this, any room joined with the sitename in the alias prefix will be owned
by the site administrator and whomever they promote.

Technology Choice

The Cactus Comments application service implements the Application Service
Specification[3]. This means we have to expose a HTTP web server. We imple-
mented our web server in the flask microframework and the entire application
in Python 3.9. We interact with the Matrix homeserver with pure HTTP calls
and not through an SDK using the requests HTTP library. The application is
containerized with docker.

The development environment is built with docker-compose and contains only
two external services: a local Synapse (Matrix homeserver) accessible at local-
host:8008 and a Matrix client (Element) at localhost:8085. Furthermore, 3 users
have been pre-registered to make development obstacle-free. The appservice is
registered with Synapse and runs as the third service.

State

The application service keeps some application state: the list of registered sites,
their owners and moderation configuration. For reliable operations, these need
to be stored in a persistent manner.

When we initially drafted our system, we were prepared to use a traditional
RDBMS or a key-value store. Ultimately, we ended up carefully modelling all
our state in Matrix events and rooms.

To model all state as matrix events and rooms, we need the notion of a moderation
room and a comment section room. A comment section room alias is the
comment section name appended to the site name. For instance, for the comment
section room alias #comments_demoblog_site405 the site name is demoblog,
the moderation room is #_comments_demoblog and the comment section name
is site405. As we use underscore as a special seperator, it is not allowed in site
names.

The moderation configuration is modelled by the same events (called power
levels) used for restrictions in normal chat rooms. When a moderation room
initially is created, the creator is invited and promoted to admin.

Now that we have a model in place, we can persist state. Given a room alias, we
can look up its id, look up that id and if it already exist, the comment section is
in use. The owner is already admin in the room. We can get the moderation
configuration by removing the comment section name from the alias and looking
up the state of the moderation room. To get a list of all registered sites, we can
ask for all joined rooms and filter on alias for moderation rooms. To check if a
site has already been registered, we ask if the moderation room exists.

Overall, this makes our service easier to deploy and operate. It is noteworthy

61

https://flask.palletsprojects.com/
https://python.org
https://requests.readthedocs.io/
https://docker.com
https://docs.docker.com/compose/

User experience: initial setup Cactus Comments

that we modelled everything in Matrix without custom event types. This means
that all standard-compliant clients will understand what is going on.

62

	Abstract
	Introduction
	Background
	Matrix
	Matrix APIs
	Homeserver
	Directed Acyclic Graph (DAG)
	Brewer's Theorem (CAP Theorem)
	Federated Model of Decentralization
	Federation in Matrix
	Room
	Events
	Message Events
	State Events
	Power Levels

	Identifiers
	Client
	Application Service (Appservice)

	Problem Analysis
	Disqus
	Facebook Comments
	Commento
	Summary and Comparison

	Design
	The Federated Solution
	Designing for the Web Platform
	Designing for the Matrix Network
	System Overview
	Web Client
	Determining Alias of Comment Room
	Authenticating as a Guest
	Authenticating as a User
	Accessing the Comments Room

	Application Service
	Managing State
	Moderation Rooms
	Comment Section Rooms

	Implementation
	Technology Choices
	Choosing Elm
	Interaction Model
	Room State Manipulations
	Comment Composition
	Authentication

	Error Handling
	Automatic Testing
	Styling
	Distribution
	User Guide
	Usage Example

	Handling Formatted Messages
	Security
	Implementation of the HTML Sanitizer
	Fuzz Testing
	Performance Optimizations
	Limiting the Problem
	Selecting an Implementation
	Accessibility

	Experiments
	Setup
	Experiment 1: Authenticate Using an Existing Matrix Account
	Purpose
	Hypothesis
	Method
	Result

	Experiment 2: Convenient Cross-platform Follow-ups
	Purpose
	Hypothesis
	Method
	Result

	Experiment 3: Continued Conversation while the Default Homeserver is Offline
	Purpose
	Hypothesis
	Method
	Result

	Experiment 4: First-time Access by Invite while the Default Homeserver is Unavailable
	Purpose
	Hypothesis
	Method
	Results

	Experiment 5: First-time Access via Alternate Alias while the Default Homeserver is Unavailable
	Purpose
	Hypothesis
	Method
	Results

	Experiment 6: Resilience to Application Service Disruption
	Purpose
	Hypothesis
	Method
	Result

	Experiment 7: Application Service Moderation State Persistence
	Purpose
	Hypothesis
	Method
	Results

	Discussion
	Disruption Scenarios
	Unavailable Application Service
	Unavailable Default Homeserver
	Unavailable Website
	Federating Comments Through Malicious Homeservers

	Tackling the Identified Problems
	Identity Fragmentation
	Inconvenient Follow-ups
	Fragility
	Data Disappearance
	Censorship
	Limited Interaction Options
	Comparison to Existing Solutions

	Conclusion
	Future work
	Other Applications of Matrix for Web-Embedded Communications
	Message-level Cryptographic Secrecy and Integrity
	MSC1772: Matrix Spaces
	MSC2753: Peeking Via Sync

	References
	Appendix A: Application Service Implementation
	Responsibility and purpose
	Application service registration
	User experience: initial setup
	Technology Choice
	State

